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My Background 



Coming up with an interesting problem is the first step 
 
Main thing I found 
 
Problem should be : 
•  interesting to both the mentee and mentor 
•  problem should challenge both  
•  problem should be engaging to both 
 
 
 

Problem Formulation 



Problem should be : 
•  interesting to both the mentee and mentor 
•  problem should challenge both  
•  problem should be engaging to both 
 
example 1: student interested in illusory contours à match 
 
example 2: student interested in modeling drums in music.  
me = interested in ML to mine patterns in music à no match.  
 
Don’t be afraid to suggest a different direction. 
  
Goal is to find a project that interests the both of  you above all! 
 
 

Problem Formulation 



keep a list of  potential undergrad research problems either of  your own 
curiosity or from your research. 
 
flexibility is usually key as research tends to different directions quickly. 
 
 
 
 
 
I know I’m just stating the obvious! :) 
 
 
 

Problem Formulation 



What is Segmentation: 
Computer Vision Task: find the boundaries of  salient regions in an image 
 

Case study 1: Image Segmentation 

Original images Our Results Brightness only [13] Normalized cuts [9]

Figure 1. Experimental results
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Example Segmentations: Simple Scenes

Segmentations of simple gray-level images can provide useful infor-
mation about the surfaces in the scene.

Original Image Segmentation (by SMC)

Note, unlike edge images, these boundaries delimit disjoint image re-
gions (i.e. they are closed).
2503: Segmentation Page: 2
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Image Segmentation: Motivation 
Recall the Los Angeles Riots of  1992 



High Point of  Riots: Reginald Denny Beaten Mercilessly on Nat’l. TV 

Image Segmentation: Some Motivation 

Public Outrage! 

Perpetrators at large! 



Calculus Based Image Processing Used to Enhance Footage 
Cognitech and UCLA Image Processing Group Help LAPD 



It started out as just a speck on a photograph 
of  a man who threw a brick at truck driver 
Reginald Denny at Florence and Normandie 
avenues in the opening hours of  the 1992 Los 
Angeles riots. 
But when Leonid Rudin subjected it to a 
complicated computer algorithm and a slew 
of  complex mathematical equations, that 
speck--originally less than 1/6,000th the size 
of  the total photograph--was revealed to be a 
rose-shaped tattoo on the arm of  the man, 
later identified in court as Damian Monroe 
Williams. 



NAWCWPNS TP 8348 

either identify those workstation bottlenecks that can be improved, automated, or 
augmented by the ACI algorithms, or to introduce new exploitation aids tailored to digital 
libraries. 

Reginald Denny Beating Investigation 

Perpetrator's tatoo superresolution 

Comparison with the suspect's real tatoo 

Cognitech, Inc. 

FIGURE 2. Investigative Image Processing. 

Outcome:  
All 3 Criminals Convicted! 

Ã Original Crime Scene Video 

Ã Tattoo Superresolution 

Ã Comparison w/ Real Tatoo 

Image Processing 
Crime Footage 



my prior work --> image segmentation and shape priors 
 
Prior UCI REU à lots of  shape modeling 
 
Shape Priors à shape info to aid in tough segmentation problems 
 

Case study 1: Image Segmentation 



(c) Proposed Model w/ Shape = 0.7 (d) Proposed Model w/ Shape = 0.9

Proposed Model w/ Shape = 1.0 Standard PPWCMS

(No Shape)

Figure 5: Segmentation Results with Learned Reference Shape

12

(c) Proposed Model w/ Shape = 0.7 (d) Proposed Model w/ Shape = 0.9

Proposed Model w/ Shape = 1.0 Standard PPWCMS
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With Shape Without Shape 

Shape Prior Segmentation 



Common interest with student à illusory contours 
 
 
 

Case study 1: Image Segmentation 

upside down triangle bright disk 



Common interest with student à illusory contours 
 
 
 

Case study 1: Image Segmentation 

cash money sign pacman and square 



common interest à illusory contours 
 
Goal:  
create model for Shape Prior Segmentation & Illusory Contour Capture! 
 
My previous work on shape prior segmentation  
 
à does not work on Illusory Contour Capture 

à Model would be Geodesic active contours + shape 
 

Case study 1: Image Segmentation 



�Initial Curve                 Evolutions                 Detected 
Objects   

− given  an  image  f :Ω→ℜ

− evolve  a  curve  C   to  detect  objects  in  f
− the curve  has to stop on the boundaries  of the objects 

Application: Active Contours 

What intrinsic quality of  curve can minimize to make it move inward?? 



Map out the project 
step by step with hurdles 
 
hurdle 1: Software considerations 
 
Use high level scripting language in initial phase of  research 
 
e.g. Matlab, Python, R, etc.  
 
Tutorials online 
 
If  new student à work on a mini project  
e.g. loading an image (selfie) and doing basic manipulation 
 
Then build up. Smaller steps add up faster to progress than a big one bc 
less likely to get stuck 
 

Case study 1: Image Segmentation 



hurdle 2: code parametric curve and get it to move inward 
 
wait. Must minimize: 
 
 
 
 
Involves the Calculus of  Variations!! 

Case study 1: Image Segmentation 

inf
C
F (C) = |C '(s) | ds

0

1

∫



hurdle 2: code parametric curve and get it to move inward 
 
wait. Must minimize: 
 
 
 
 
Involves the Calculus of  Variations!! 
 
 
Solution: 1-2 weeks of  reading Peter Olver’s notes on this 
& calculating the Gateaux Derivative of  F(C) 
 
à Get functional gradient of  F(C) 
à Gradient Descent to minimize F(C) 
à Curve moves inward to min arc length 

Case study 1: Image Segmentation 

inf
C
F (C) = |C '(s) | ds

0

1

∫



hurdle 3: how to stop the curve? 
 
 
 

Case study 1: Image Segmentation 



hurdle 3: how to stop the curve? 
 

edge detector! 
 
 
 
 
 
 
 
 
 
 
g ~ 0 on edges 
g ~ 1 in flatter regions 
 
 
 
 
 

Case study 1: Image Segmentation 

Boundary detection: stopping edge-function (external forces) 

Example: 
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hurdle 4: Put it together à GAC Model 
 
 
 
 
 
 
 
g: edge detector  
NRG is 0 at edges à curve doesn’t move 
 
point is, we progressively build up 
 
 
 
 

Case study 1: Image Segmentation 
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Geodesic model (Caselles, Kimmel, Sapiro ‘95) 
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hurdle 5: Put it together à GAC Model + Shape 
 
 
 
 
 
 
 
Move a curve that stops at edges in image 
while enforcing shape 
 
 
 

Case study 1: Image Segmentation 

inf
C
F (C) = |C '(s) | g(|∇I (C(s)) |)ds+ Shape

0

1

∫

Householder and Park 2019 
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Case study 1: Image Segmentation 

inf
C
F (C) = |C '(s) | g(|∇I (C(s)) |)ds+ Shape

0

1

∫
Householder and Park 2019 
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Case study 1: Image Segmentation 



Case study 1: Image Segmentation 

without shape with shape 



Case study 1: Image Segmentation 



Important Discussion with the Student: 
 
•  where does model work. where it doesn’t à model limitations 
•  advantages over other methods 
•  no method is a be all end all  
 
all have advantages and disadvantages regardless of  what author says 
(for the most part) 
 
Undergrads really need to see this point! 

Case study 1: Image Segmentation 



Motivate by interest 
 
Student was interested in Deep Learning Architectures 
 

e.g. resnets, inception, wide-resnets 
 

Case study II: Deep Learning 



Motivate by interest 
 
Student was interested in Deep Learning Architectures 
 
 
I was doing work on sparsity promoting norms in computer vision 
 
à try sparsity promoting regularizers in Deep Networks 
 
 

Case study II: Deep Learning 



Motivate by interest 
 
Student was interested in Deep Learning Architectures 
 
 
I was doing work on sparsity promoting norms in computer vision 
 
à  try sparsity promoting regularizers in Deep Networks 

à Instead of  creating new network, systematically prune existing ones 

à Compressed networks have huge advantages! 
 
 

Case study II: Deep Learning 



 
 

Case study II: Deep Learning 
Example of  a compressed network via pruning 
 



Project: sparse neural networks 
 
hurdle 1: 
ML research bottleneck = computing power 
 
Cannot do deep learning without GPU acceleration! 
(GPU = graphics processing unit) 
 
GPUs are expensive! 
 
Cloud based solutions are even more so! 
 
Solution?? 
 

Case study II: Deep Learning 



 
option 1: hardware 
•  nvidia: GPU research grants 
•  internal faculty research and development grants 
•  fellowship funding 
•  external research grant funding 

option 2: cloud computing 
•  Google: cloud computing research grants. $5k in credits is easy to 

obtain and fast 
•  AWS: cloud comp. grants. More involved but bigger awards. $15k 
 
We got both à $20k cloud computing credits 

Case study II: Deep Learning 



One tip for Cloud Computing Grants: 
 
•  Apply for grants for cloud computing credits with google or AWS 
•  Tie undergrad research into your own research. Makes proposal 

stronger than if  only undergrad research. 
 
For projects:  
•  extension of  previous work 
•  tweak of  previous work 
•  new direction of  previous work 
•  something new altogether that interests the both of  you 
 
 
 

Case study II: Deep Learning 



Hurdle 2: Coding. 
 
•  Use Pytorch (facebook AI) 
•  Tensorflow/Keras (Google) 
•  or create a neural net from scratch in matlab or python (no GPU) 
•  Can also use Scikitlearn for python (no GPU) 
 
Hurdle 2: testing models 
Use standard net e.g LeNet5 on standard dataset  
e.g. MNIST handwritten digits 
 
LeNet5 trainable on most laptops.  
 
Other sets like CIFAR 10/100, ImageNet require GPU acceleration. 
 
 
 
 

Case study II: Deep Learning 



 
Steep Learning curve: software, gpu, cloud computing etc. 
 
Use github to share code.  
 
block off  multi-hour time slots to sit down and code and run training of  
models with your student.  
 
the importance of  coding and figuring things out together in a team 
environment with ML cannot be stressed enough. 
 
 

Case study II: Deep Learning 



Get standard results on network 
 
add regularization e.g. L1, L2, L1-L2 etc. and see what happens.  
 
Only regularize certain layers. See what happens. 
 
vary the regularization parameter 
 
check sparsity and accuracy 
 
try it on groups/neurons for conv nets. 
 
show effectiveness 
 
again, no one method does it all 
advantages and disadvantages in detail 
 
 
 
 

Case study II: Deep Learning 



Mathematical: 
can prove anything? 
convergence? 
any links to other papers? 
can prove results on a smaller network even if  results may or may not 
hold for larger one 
 
disseminate: 
Conference: 
undergrad SCURR, College Ugrad Conferences 
ML/AI/IP conferences: ICIP, CVPR, etc. 
 
Journal: 
SIAM SIURO 
Institutional undergrad research journals  
 
 
 
 
 

Case study II: Deep Learning 



Thank You for 
Your Attention! 
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�Application: “active contour” 

�Initial Curve                 Evolutions                 Detected 
Objects   

− giving  an  image  f :Ω→ℜ

− evolve  a  curve  C   to  detect  objects  in  f
− the curve  has to stop on the boundaries  of the objects 



��Basic idea in classical active contours 

Curve evolution and deformation (internal forces):  

                     Min  Length(C) +Area(inside(C))  
         Boundary detection: what is it? What is stopping criteria 
for curve? 

�Initial Curve                 Evolutions                 Detected 
Objects   
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| f − c1 |
inside(C )
∫

2
dxdy+ | f − c2 |

2 dxdy
outside(C )
∫

where  

 c1 = average( f ) inside C
 c2 = average( f ) outside C

�������Fit > 0                Fit > 0              Fit > 0            Fit ~ 0 

Minimize: (Fitting +Regularization) 

Fitting not depending on gradient       detects          “contours without gradient” 

Data Fidelity Term 



Chan-Vese (CV) Model 

v  P.W. Constant Version of  Mumford Shah Model 

v  Fit constant homogeneous regions while enforcing regularity on boundary of  C 

v  Active Contours without Edges 

∫ ∫ −+−+

⋅+⋅=

)( )(

2
20

2
10

21,,

||||

))((||),,(inf
21

Cinside Coutside

Ccc

dxdycudxdycu

CinsideAreaCCccF

λλ

νµ
�������Fitting + Regularization terms (length, area)   

����C = boundary of  an open and bounded domain 

    |C| = the length of  the boundary-curve C 



��������Advantages 
Automatically detects interior 
contours! 

Works very well for concave 
objects  

Robust w.r.t. noise  

Detects blurred contours  

The initial curve can be placed 
anywhere! 

Allows for automatic change 
of  topologies 

�

�������������������Experimental Results 
C  of Evolution 

270 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 2, FEBRUARY 2001

Fig. 3. Two different regularizations of the (top) heaviside function and
(bottom) delta function .

Keeping and fixed, and minimizing with respect to
, we deduce the associated Euler–Lagrange equation for .
Parameterizing the descent direction by an artificial time ,
the equation in (with defining
the initial contour) is

div

in

in

on (9)

where denotes the exterior normal to the boundary , and
denotes the normal derivative of at the boundary.

III. NUMERICAL APPROXIMATION OF THE MODEL

First possible regularization of by functions, as pro-
posed in [27], is

if
if

if

Fig. 4. Detection of different objects from a noisy image, with various
shapes and with an interior contour. Left: and the contour. Right:
the piecewise-constant approximation of . Size ,

, , no
reinitialization, cpu s.

In this paper, we introduce and use in our experiments the fol-
lowing regularization of

These distinct approximations and regularizations of the func-
tions and (taking ) are presented in Fig. 3. As

, both approximations converge to and . A differ-
ence is that has a small support, the interval , while

is different of zero everywhere. Because our energy is non-
convex (allowing therefore many local minima), the solution
may depend on the initial curve. With and , the al-
gorithm sometimes computes a local minimizer of the energy,
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In this paper, we introduce and use in our experiments the fol-
lowing regularization of
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tions and (taking ) are presented in Fig. 3. As

, both approximations converge to and . A differ-
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is different of zero everywhere. Because our energy is non-
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Fig. 12. Spiral from an art picture. Size , , five iterations of reinitialization, cpu s.

the geometric model (2)], by which the curve cannot detect the
smooth boundary.

In Fig. 10, we validate our model on a very different problem:
to detect features in spatial point processes in the presence of
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the geometric model (2)], by which the curve cannot detect the
smooth boundary.

In Fig. 10, we validate our model on a very different problem:
to detect features in spatial point processes in the presence of



Convex Relaxed CV Model 
•  Partition	boundaries	in	MS	&	Potts	model	rep’d	by	L0	Norm:																																

•  Gradient	distribn’s	mostly	vertical	and	horizontal	in	natural	images.		

•  L1-αL2	TV	norm	is	better	approx’n	to	L0	via	level	lines	than	L2	TV.		

•  α	chosen	based	on	gradient	distrib’s 

A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION FOR
RELAXED MUMFORD-SHAH IMAGE SEGMENTATION

Fredrick Park
?†

Yifei Lou
?

Jack Xin
†

?† Whittier College, Mathematics Department, Whittier, CA 90601
?University of Texas Dallas, Department of Mathematical Sciences, Richardson, TX 75080

† University of California at Irvine, Mathematics Department, Irvine, CA 92697

ABSTRACT

We propose to incorporate a weighted difference of anisotropic
and isotropic total variation (TV) norms into a relaxed formu-
lation of the two phase Mumford-Shah (MS) model for image
segmentation. We show results exceeding those obtained by
the MS model when using the standard TV norm to regular-
ize partition boundaries. In particular, examples illustrating
the qualitative differences between the proposed model and
the standard MS one are shown. A fast numerical method
is introduced to minimize the proposed model utilizing the
difference-of-convex algorithm (DCA) and the primal dual
hybrid gradient (PDHG) method.

Index Terms— Total-Variation, Segmentation, Mumford-
Shah Functional, Chan-Vese Model, Primal-Dual

1 Introduction
The celebrated Mumford and Shah (MS) model [1] in 2-phase
form known as the Chan-Vese (CV) model [2] is one of the
most studied and successful models in image processing. The
CV model has the following formulation:

min
⌃,c1,c2

Per(⌃) + �

Z

⌃
(c1 � f)2dx+

Z

⌃c

(c2 � f)2dx. (1)

Here, f is a given gray scale image, ⌃ denotes a region, and
⌃c the outside of that region. The key idea is to minimize
the above functional (1) by matching two regions (constants)
in the L

2 sense while also minimizing the perimeter of the
boundaries between them. The values are designated by c1

and c2 and are obtained on the regions ⌃ and ⌃c respectively.
The two regions and values are unknowns and need to be
solved for during the minimization. In general, the CV model
is difficult to implement in practice. Chan and Vese utilized
a level set method formulation and showed successful results.
Conventionally, level set methods can be slow to converge due
to the need for periodic reinitialization of the level set func-
tion to a signed distance one. More recently, Chan et al. [3]

Corresponding author email: fepark@whittier.edu.
This work was supported in part by ONR grant N00014-11-1-0602, NSF
grant DMS-1222507, NSF grant DMS-1522383, and NSF grant DMS-
1522786.

and Bresson et al. [4] proposed convex relaxed formulations
of the CV model. The general formulation follows as:

min
0u1

Z

⌦
g|ru| dx+ �

Z

⌦

�
(c1 � f)2 � (c2 � f)2

 
u dx

(2)
where ⌦ is the image domain and g(x) is an edge detector
or set to value 1. The segmented region ⌃ is realized by
taking the upper level set of u in the following way: ⌃ =
{x : u(x) � 1/2}. The main idea was to relax the non-convex
constraint of u being binary to a convex one. Once the min-
imization problem (2) is solved, one simply thresholds u to
obtain the segmented region. The authors show accurate and
successful segmentations along with fast numerical results.

The L0 norm on the gradient J(u) = kruk0 is construed
as the length of partition boundaries in the context of the clas-
sical Potts model [5] or two-phase Mumford-Shah segmen-
taion [1]. To circumvent the NP-hard L0 norm, the convex re-
laxed approach is to use the L1 norm on ru, see [6]. L1 norm
on the gradient is known as the total-variation (TV) norm [7].
To approximate L0, a series of works show that L1 � L2 is
better than L0 (greedy approaches), L1, and Lp in compres-
sive sensing [8]. When applying L1�L2 on image gradients,
it enforces gradients to be either horizontal or vertical. To
account for other gradient directions, a weighted difference,
i.e. L1 � ↵L2 is considered in the recent work by Lou et
al. [9], where ↵ is chosen according to gradient distributions.
They show accurate results and provide a convergence proof
using a difference-of-convex algorithm (DCA) [10, 11, 12].
L1 � 0.5L2 is also observed to be numerically more stable
compared to L1 � L2. We also note that the level curves for
the convex addition L1 + ↵L2 closely resemble those of L1

while those for L1 � ↵L2 are closer to L0.

This work is an extension of the work by Lou et al. [9]
to the image segmentation problem. To that end, we propose
incorporating a weighted difference of anisotropic-isotropic
TV into the two-phase relaxed CV model. For the remainder
of the paper, we refer to L1 �↵L2 as the weighted difference
of anisotropic and isotropic TV:

Jani �↵Jiso = kuxk1 + kuyk1 �↵k
q

|ux|2 + |uy|2k1 (3)

L1 - 0.5L2 closer to L0 than: 
L1, L2, and L1 - L2 

Level lines plot 



between them. The MS model is one of the most studied and successful segmentation models in
image processing. However, one particular caveat of this model, given its variational nature, is that
the functional has many local minimizers that can depend on the initial starting conditions (initial
guess) that correspond to incorrect segmentations at diÆering scales. There have been many recent
convexifications of the MS model, see [4, 13]. However, the non-uniquesness of minimizers often
pose similar complications.

Given the already present challenges with image segmentation and the additional caveats of the
MS model, certain settings can further compound these issues, if not outright making the problem
nearly impossible to solve in a meaningful way (e.g. meaningful segmentations). Such cases include
and are not limited to segmenting images amidst clutter (geometric noise), segmenting an object
containing components with large scale non-homogenous image intensities, or segmenting objects
near ones with similar intensities. For an explicit example of this, we can look to Fig. 1 where
a segmentation of a plane is attempted by a polygonal version of the Mumford-Shah model. In
Fig. 1 (a) an initial curve is observed while the resulting segmentation is seen in Fig. 1 (b) where
the MS model is unable to correctly segment the airplane. The clutter and the fact that the plane
contains components of diÆering intensities are the likely causes that exacerbate the problem, not to
mention the contribution from the adjacent plane further complicating the segmentation. Therefore,
in these settings (and possibly many others), unless some a priori information is incorporated into
the standard segmentation model, tackling such problems are quite formidable at best.

(a) Image and Initial Starting Curve (b) Segmentation Result (No Shape)

Figure 1: Segmentation Results, MS Functional:

There are some key di±culties in building a successful shape prior segmentation model. Develop-
ing and/or utilizing a shape signature that is invariant under rigid motions while also simultaneously
having the ability to uniquely identifying a broad class of shapes is paramount. Many useful sig-
natures and references thereof can be found in [18, 9, 10] and we refer the reader there. Moreover,
besides the beneficial invariance properties, the ability to incorporate such shape signatures natu-
rally and e±ciently into existing segmentation models is mandatory for applications. Developing a
model under these two-fold conditions is quite di±cult due to the limitations of both.

The key component of the approach in the paper is to incorporate a modified two dimensional
version of the cliques signature proposed by Kimmel et al. [9, 10, 18] into a polygonal imple-
mentation of the two phase piecewise constant Mumford Shah model. Moreover, an e±cient and
nearly automated numerical algorithm for segmenting images in the di±cult segmentation settings
described earlier will be shown. Although many sophisticated numerical implementations of the
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Shape Prior Segmentation 
Why are Shape Priors Needed? 

Example of  MS Segmentation Without Shape! 

•  Difficult Cases: Clutter, Regions w/ non-uniform intensities, Occluded Objects 
•  Prior Must be compatible with Segmentation Models i.e. both can be minimized 



Cliques Invariant Signature 

Motivatation:  
Bending Invariant Signatures 
Elad and Kimmel 03’ 

r1 

r2 r3 

rn 

rn-1 

Incorporation into: 
•  Geodesic Active Contours (Snakes) 
•  Polygonal Implementation of  the P.W. Constant MS Model 
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ji rrpp −−−∑
ri: pts. lying on reference shape 

pi: pts. lying on some evolving 
contour 

Intervertex	Distances: 



Cliques Shape Matching Energy 

4.3 Di±cult Segmentation: Explicit Example

In this culminating example, we segment what is considered to be a di±cult case. In Fig. 14 (a), a
reference image and shape prior (in blue) is observed while in (b), a clean image (to be segmented)
is seen. The image in (b) is of particular interest since the color of the fuselage matching that of
the surrounding tarmac makes this case very di±cult due to the ambiguities of the region to be
segmented. Further compounding this particular case is the observation that the flight equipment
around the plane (clutter) also has similar contrast to the planes wings. In addition, the white
fuselage and wings of the adjacent plane also has the same contrast as the wings of the plane to be
segmented.

In Fig. 15 (a), the initial contour for our segmentation procedure is observed. The proposed
model is then minimized by gradually increasing the shape strength constant (in increments of 0.2)
through values from 0.1 to 1.0. The results from the proposed model with shape strength equaling
0.1, 0.5, and finally 1.0 are observed in Fig. 15 (b)–(d). Right from the start, even though the shape
strength term has value only 0.1, the plane has already become segmented. The final segmentation
result is observed in 15 (d) where the shape term has value 1.0 and the correct plane is accurately
segmented despite the clutter around the plane and the fuselage having nearly the same contrast as
the surrounding tarmac. The result from the standard (no shape) Mumford-Shah model is observed
in Fig. 15 (e), where the plane is nowhere near correctly segmented. Lastly, we remark that the
scale parameter ‘s’ in this experiment was manually chosen over a range of scales.
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Figure 4: Segmentation Results with Learned Reference Shape
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•  ‘s’: scale parameter to be min’d over as well 
•  Invariance to Rigid Motion 
•  Scale Invariance 

Shape Matching Energy: 



Proposed Model 

Polygonal CV Model + Shape! 

®: shape strength 
§: Evolving Polygonal Curve 

Best approx of  ‘f ’ in L2 sense taking 2 values c1 and c2  

While Enforcing § matches reference shape 



(c) Proposed Model w/ Shape = 0.7 (d) Proposed Model w/ Shape = 0.9
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Figure 5: Segmentation Results with Learned Reference Shape
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With Shape Without Shape 

Shape Prior Segmentation 



Shape Prior Segmentation Example 

4.3 Di±cult Segmentation: Explicit Example

In this culminating example, we segment what is considered to be a di±cult case. In Fig. 14 (a), a
reference image and shape prior (in blue) is observed while in (b), a clean image (to be segmented)
is seen. The image in (b) is of particular interest since the color of the fuselage matching that of
the surrounding tarmac makes this case very di±cult due to the ambiguities of the region to be
segmented. Further compounding this particular case is the observation that the flight equipment
around the plane (clutter) also has similar contrast to the planes wings. In addition, the white
fuselage and wings of the adjacent plane also has the same contrast as the wings of the plane to be
segmented.

In Fig. 15 (a), the initial contour for our segmentation procedure is observed. The proposed
model is then minimized by gradually increasing the shape strength constant (in increments of 0.2)
through values from 0.1 to 1.0. The results from the proposed model with shape strength equaling
0.1, 0.5, and finally 1.0 are observed in Fig. 15 (b)–(d). Right from the start, even though the shape
strength term has value only 0.1, the plane has already become segmented. The final segmentation
result is observed in 15 (d) where the shape term has value 1.0 and the correct plane is accurately
segmented despite the clutter around the plane and the fuselage having nearly the same contrast as
the surrounding tarmac. The result from the standard (no shape) Mumford-Shah model is observed
in Fig. 15 (e), where the plane is nowhere near correctly segmented. Lastly, we remark that the
scale parameter ‘s’ in this experiment was manually chosen over a range of scales.
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Final Segmented Image! 

® = 0.1 ® = 0.5 ® = 1.0 

Final Seg’d. Image! 
Increasing  

shape strength 



Disocclusion 

R: Occluded Region 
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Figure 12: Dissocclusion of a Maple Leaf
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Figure 12: Dissocclusion of a Maple Leaf
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Occluded Region: R 

Don’t fit data in R 



Disocclusion Example 
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Shape increased from 0.1, 02, . . . , 0.9, 1.0.
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4.3 Di±cult Segmentation: Explicit Example

In this culminating example, we segment what is considered to be a di±cult case. In Fig. 14 (a), a
reference image and shape prior (in blue) is observed while in (b), a clean image (to be segmented)
is seen. The image in (b) is of particular interest since the color of the fuselage matching that of
the surrounding tarmac makes this case very di±cult due to the ambiguities of the region to be
segmented. Further compounding this particular case is the observation that the flight equipment
around the plane (clutter) also has similar contrast to the planes wings. In addition, the white
fuselage and wings of the adjacent plane also has the same contrast as the wings of the plane to be
segmented.

In Fig. 15 (a), the initial contour for our segmentation procedure is observed. The proposed
model is then minimized by gradually increasing the shape strength constant (in increments of 0.2)
through values from 0.1 to 1.0. The results from the proposed model with shape strength equaling
0.1, 0.5, and finally 1.0 are observed in Fig. 15 (b)–(d). Right from the start, even though the shape
strength term has value only 0.1, the plane has already become segmented. The final segmentation
result is observed in 15 (d) where the shape term has value 1.0 and the correct plane is accurately
segmented despite the clutter around the plane and the fuselage having nearly the same contrast as
the surrounding tarmac. The result from the standard (no shape) Mumford-Shah model is observed
in Fig. 15 (e), where the plane is nowhere near correctly segmented. Lastly, we remark that the
scale parameter ‘s’ in this experiment was manually chosen over a range of scales.
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prior 

Initial curve With Prior No Prior! 

•  Fuselage matches tarmac.  
•  2 completely different intensities in plane 

Shape Prior Segmentation: Very Difficult Case 

Very difficult segmentation!  
 



Ongoing and Future Work 
v  Convergence proof  of  the DCA algorithm for proposed model 

v  Other ways of  achieving/exploiting directional sparsity 

v  Shape Prior Segmentation: Modeling both occluders and shapes 

v  Neural Network à semantic segmentation. Interplay between a 
trained model and a mathematical one. Not a 2 step approach 
but a synergistic one. 

v  Using CNN’s for applications to spatially varying blind 
deconvolution. 

v  Stochastic Primal Dual methods for Neural Network 
Optimization 

v  Convex relaxation techniques for NN’s. Some work done on 
quantizing weights. Xin et al. ‘18 
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Your Attention! 


