Mentoring Undergraduates in Applied Mathematics and Computer Science Research

Fred Park
 Whittier College

AMS Sectional Meeting, UC Riverside November 9th 2019

My Background

Undergrad in Research at UCLA with 3 students
Team lead at UCI Interdisciplinary Computational Applied Math (iCAMP) REU for 2 years

Undergraduate Research at various levels at Whittier College e.g. fellowships, senior seminar, or otherwise

Problem Formulation

Coming up with an interesting problem is the first step
Main thing I found
Problem should be :

- interesting to both the mentee and mentor
- problem should challenge both
- problem should be engaging to both

Problem Formulation

Problem should be :

- interesting to both the mentee and mentor
- problem should challenge both
- problem should be engaging to both
example 1: student interested in illusory contours \rightarrow match
example 2: student interested in modeling drums in music. me $=$ interested in ML to mine patterns in music \rightarrow no match.

Don't be afraid to suggest a different direction.

Goal is to find a project that interests the both of you above all!

Problem Formulation

keep a list of potential undergrad research problems either of your own curiosity or from your research.
flexibility is usually key as research tends to different directions quickly.

I know I'm just stating the obvious! :)

Case study 1: Image Segmentation

What is Segmentation:
Computer Vision Task: find the boundaries of salient regions in an image

Image Segmentation: Motivation

"Can we all get alono" get along: $=$
 Recall the Los Angeles Riots of 1992

Image Segmentation: Some Motivation High Point of Riots: Reginald Denny Beaten Mercilessly on Nat'l. TV

Public Outrage!
Perpetrators at large!

Calculus Based Image Processing Used to Enhance Footage

Cognitech and UCLA Image Processing Group Help LAPD

THE Wall STREET JOORNAL.

California Company Uses Calculus to Pin The Crime on the Criminal Who Did It

The two men were on trial for murder. Convictions might have been easy: A gas sation security camera had filmed the whole tussle, culminating in fatal ganshous. But the videotage was so blurry that no one could really tell who atacked whom The rwo argoed self-defense, and the leo Angries Counry jury hung.

So local detectives cursed to Cognivech Inc, a tin company armed with a posethal new techaique for enhancing furry images. Cogricech's improved video dearly showed the saspecxs pinning the victim face doon againat the groend and firing into tis shaull. Both defendarts evenoually pleaded guiliy.

Inde past two years, andyaing crime and acodent videotaper has blowsoned inno a filldime business for Cogrinech, based in Sanca Morica, Calif. It is among a bandfel of companies applying sophisticated mathemarics to clearing up crime and acoldent videoupes.

Before these compuries coisted, police Eying m enhance poor videos had to bey commercial "Thotoshop" sol'ware, which generally processes one frame at a time and is limived to simple operations wirh as innmeine fnverav. fir thry muld send thrif

This computer-generated Image Is the first stop in a process that allowed Cognitech to Identify a fattoo (circled) on the arm of Roginald Donny's attacker
frame and the nature of diatortions caused by poor
work is done on compu:er workstaions as employees' beikops.

On a trpical day, Mr. Jobin prowls the ollies looking over emplopets stoulders as they analye vdeotaper, asking questions and making suggevions. For paniculaty stubbem videoraper, the indelatigable Mr. Rutin ofien suys late inno the night adapting compuier prograns to do that spe of image bever.

Cognitech in't alone in the expanding videoenkanctmest field. Anocher small company, Trec lac. in Hunisvile. Ala. sells software foe entancing videoupes to the F3I and ocher law enlorcement agencles. And Aerospace Cerp, a aonpoolt miliaryresearth agocky, recendy acaned a small urit to andiyet crime videcapes. fi now handiet a couple of dosen cases per year.

Neither the FBl nor Tree will commess on their enhancement techniques. Aerospoce, for its part, say 2 variety of usadard mathematical nethods for inproving images serve it jug face. "Standand image enhancement is a whpping field.* agrees Massachuseus Instity. of Technology electical engineer Nan Willhy. He adds das "the jury's gitili ou on the overall inpact" of Cogrited's method.

In any case, all sides expect their caseloads to increwe it mow havinemes hur wohliviratef vifor-

Los Angeles Cimes

LOCAL U.S. WORID	BUSINESS	SPORTS	ENTERTANMMENT	HPALTH	LVING	TRAVPL.	OPINTON	Seurct	∞

MONEY $4 C O$ TECINOLOGY PERSONALPINANCE SMALLAUSERESS COMPANYTOWN JORS REAL BSTATE CARS

YOU ARE HERE: LATHone \rightarrow Collectioes \rightarrow Phetegraphs

The Region : SOUTHERN CALIFORNIA ENTERPRISE: Cognitech Thinks It's Got a Better Forensic Tool : The firm uses complex math in video image-enhancing technology that helps in finding suspects.

September O5, 1994 | KAREN KAPLAN | TDMES STAFF WRITER

It started out as just a speck on a photouraph of a man who threw a brick at truck driver Reginald Denny at Florence and Normandie avenues in the opening bours of the 19 gga Los Angeles riots.

But when Leoaid Radin subjected it to a complicated computer algorithm and a slew of complex mathematioal equations, that speck-originally less than $1 / 6,000$ th the shae of the total photogragh -was revealed to be a rose-shaped tattoo on the arm of the man, later identified in court as Damian Moaroe Williams.

Reginald Denny Beating Investigation

Image Processing Crime Footage
\leftarrow Original Crime Scene Video
\leftarrow Tattoo Superresolution
\leftarrow Comparison w/ Real Tatoo

Outcome:
All 3 Criminals Convicted!

Case study 1: Image Segmentation

my prior work --> image segmentation and shape priors
Prior UCI REU \rightarrow lots of shape modeling
Shape Priors \rightarrow shape info to aid in tough segmentation problems

Shape Prior Segmentation

With Shape
Without Shape

Case study 1: Image Segmentation

Common interest with student \rightarrow illusory contours

upside down triangle

bright disk

Case study 1: Image Segmentation

Common interest with student \rightarrow illusory contours

cash money sign
pacman and square

Case study 1: Image Segmentation

common interest \rightarrow illusory contours
Goal: create model for Shape Prior Segmentation \& Illusory Contour Capture!

My previous work on shape prior segmentation
\rightarrow does not work on Illusory Contour Capture
\rightarrow Model would be Geodesic active contours + shape

Application: Active Contours

- given an image $\mathrm{f}: \Omega \rightarrow \mathfrak{R}$
- evolve a curve C to detect objects in f
- the curve has to stop on the boundaries of the objects

Initial Curve \longrightarrow Evolutions \longrightarrow Detected

What intrinsic quality of curve can minimize to make it move inward??

Case study 1: Image Segmentation

Map out the project step by step with hurdles
hurdle 1: Software considerations
Use high level scripting language in initial phase of research
e.g. Matlab, Python, R, etc.

Tutorials online

If new student \rightarrow work on a mini project
e.g. loading an image (selfie) and doing basic manipulation

Then build up. Smaller steps add up faster to progress than a big one bc less likely to get stuck

Case study 1: Image Segmentation

hurdle 2: code parametric curve and get it to move inward wait. Must minimize:

$$
\inf _{C} F(C)=\int_{0}^{1}\left|C^{\prime}(s)\right| d s
$$

Involves the Calculus of Variations!!

Case study 1: Image Segmentation

hurdle 2: code parametric curve and get it to move inward
wait. Must minimize:

$$
\inf _{C} F(C)=\int_{0}^{1}\left|C^{\prime}(s)\right| d s
$$

Involves the Calculus of Variations!!

Solution: 1-2 weeks of reading Peter Olver's notes on this \& calculating the Gateaux Derivative of $F(C)$
\rightarrow Get functional gradient of $F(C)$
\rightarrow Gradient Descent to minimize $F(C)$
\rightarrow Curve moves inward to min arc length

Case study 1: Image Segmentation

hurdle 3: how to stop the curve?

Case study 1: Image Segmentation

hurdle 3: how to stop the curve?
edge detector!
Boundary detection: stopping edge-function (external forces)
$g \geq 0, g \downarrow, \lim _{t \rightarrow \infty} g(t)=0$
Example: $g\left(\left|\nabla u_{0}\right|\right)=\frac{1}{1+\left|\nabla G_{\sigma} * u_{0}\right|^{p}}$
$\mathrm{g} \sim 0$ on edges
$\mathrm{g} \sim 1$ in flatter regions

Case study 1: Image Segmentation

hurdle 4: Put it together \rightarrow GAC Model

Geodesic model (Caselles, Kimmel, Sapiro ‘95)

$$
\inf _{C} F(C)=2 \int_{0}^{1}\left|C^{\prime}(s)\right| g(|\nabla I(C(s))|) d s
$$

g: edge detector
NRG is 0 at edges \rightarrow curve doesn't move
point is, we progressively build up

Case study 1: Image Segmentation

 hurdle 5: Put it together \rightarrow GAC Model + ShapeHouseholder and Park 2019

$$
\inf _{C} F(C)=\int_{0}^{1}\left|C^{\prime}(s)\right| g(|\nabla I(C(s))|) d s+\text { Shape }
$$

Move a curve that stops at edges in image while enforcing shape

Case study 1: Image Segmentation

Householder and Park 2019
$\inf _{C} F(C)=\int_{0}\left|C^{\prime}(s)\right| g(|\nabla I(C(s))|) d s+$ Shape

Case study 1: Image Segmentation

(a) Initialization

(c) Evolving

(b) Evolving

(d) Result

Case study 1: Image Segmentation

without shape

with shape

Case study 1: Image Segmentation

(a) Initialization

(c) Evolving

(b) Evolving

(d) Result

Case study 1: Image Segmentation

Important Discussion with the Student:

- where does model work. where it doesn't \rightarrow model limitations
- advantages over other methods
- no method is a be all end all
all have advantages and disadvantages regardless of what author says (for the most part)

Undergrads really need to see this point!

Case study II: Deep Learning

Motivate by interest
Student was interested in Deep Learning Architectures
e.g. resnets, inception, wide-resnets

Grid Size Reduction
(with some modifications)

Grid Size Reduction

Case study II: Deep Learning

Motivate by interest
Student was interested in Deep Learning Architectures

I was doing work on sparsity promoting norms in computer vision
\rightarrow try sparsity promoting regularizers in Deep Networks

Case study II: Deep Learning

Motivate by interest
Student was interested in Deep Learning Architectures

I was doing work on sparsity promoting norms in computer vision
\rightarrow try sparsity promoting regularizers in Deep Networks
\rightarrow Instead of creating new network, systematically prune existing ones
\rightarrow Compressed networks have huge advantages!

Case study II: Deep Learning

Example of a compressed network via pruning

Case study II: Deep Learning

Project: sparse neural networks
hurdle 1 :
ML research bottleneck = computing power
Cannot do deep learning without GPU acceleration! (GPU = graphics processing unit)

GPUs are expensive!

Cloud based solutions are even more so!

Solution??

Case study II: Deep Learning

option 1: hardware

- nvidia: GPU research grants
- internal faculty research and development grants
- fellowship funding
- external research grant funding
option 2: cloud computing
- Google: cloud computing research grants. $\$ 5 \mathrm{k}$ in credits is easy to obtain and fast
- AWS: cloud comp. grants. More involved but bigger awards. \$15k

We got both $\rightarrow \$ 20 \mathrm{k}$ cloud computing credits

Case study II: Deep Learning

One tip for Cloud Computing Grants:

- Apply for grants for cloud computing credits with google or AWS
- Tie undergrad research into your own research. Makes proposal stronger than if only undergrad research.

For projects:

- extension of previous work
- tweak of previous work
- new direction of previous work
- something new altogether that interests the both of you

Case study II: Deep Learning

Hurdle 2: Coding.

- Use Pytorch (facebook AI)
- Tensorflow/Keras (Google)
- or create a neural net from scratch in matlab or python (no GPU)
- Can also use Scikitlearn for python (no GPU)

Hurdle 2: testing models
Use standard net e.g LeNet5 on standard dataset e.g. MNIST handwritten digits

LeNet5 trainable on most laptops.

Other sets like CIFAR 10/100, ImageNet require GPU acceleration.

Case study II: Deep Learning

Steep Learning curve: software, gpu, cloud computing etc.

Use github to share code.
block off multi-hour time slots to sit down and code and run training of models with your student.
the importance of coding and figuring things out together in a team environment with ML cannot be stressed enough.

Case study II: Deep Learning

Get standard results on network
add regularization e.g. L1, L2, L1-L2 etc. and see what happens.
Only regularize certain layers. See what happens.
vary the regularization parameter
check sparsity and accuracy
try it on groups/neurons for conv nets.
show effectiveness
again, no one method does it all
advantages and disadvantages in detail

Case study II: Deep Learning

Mathematical:
can prove anything?
convergence?
any links to other papers?
can prove results on a smaller network even if results may or may not hold for larger one
disseminate:
Conference:
undergrad SCURR, College Ugrad Conferences
ML/AI/IP conferences: ICIP, CVPR, etc.
Journal:
SIAM SIURO
Institutional undergrad research journals

Thank You for Your Attention!

Application: "active contour"

- giving an image $\mathrm{f}: \Omega \rightarrow \mathfrak{R}$
- evolve a curve C to detect objects in f
- the curve has to stop on the boundaries of the objects

Initial Curve \longrightarrow Evolutions \longrightarrow Detected

Basic idea in classical active contours

Curve evolution and deformation (internal forces):

$$
\text { Min Length(C) }+ \text { Area(inside(C)) }
$$

Boundary detection: what is it? What is stopping criteria for curve?

Initial Curve \longrightarrow Evolutions \rightarrow Detected

Data Fidelity Term

$$
\int_{\text {side }(C)}\left|f-c_{1}\right|^{2} d x d y+\int_{\text {outside }(C)}\left|f-c_{2}\right|^{2} d x d y
$$

$$
c_{1}=\operatorname{average}(f) \text { inside } C
$$

where

$$
c_{2}=\operatorname{average}(f) \text { outside } C
$$

Fit >0
Fit >0
Fit >0
Fit ~ 0

Minimize: (Fitting + Regularization)
Fitting not depending on gradient
detects

Chan-Vese (CV) Model

 Fitting + Regularization terms (length, area)$\inf _{c_{1}, c_{2}} F\left(c_{1}, c_{2}, C\right)=\mu \cdot|C|+v \cdot \operatorname{Area}($ inside $(C))$ c_{1}, c_{2}, C
$+\lambda \int_{\text {inside(}(C)}\left|u_{0}-c_{1}\right|^{2} d x d y+\lambda \int_{\text {ouside(}(C)}\left|u_{0}-c_{2}\right|^{2} d x d y$
$C=$ boundary of an open and bounded domain
$|C|=$ the length of the boundary-curve C

* P.W. Constant Version of Mumford Shah Model
* Fit constant homogeneous regions while enforcing regularity on boundary of C
* Active Contours without Edges

Experimental Results

Evolution of C

Advantages

Automatically detects interior contours!

Works very well for concave objects

Robust w.r.t. noise

Detects blurred contours
The initial curve can be placed anywhere!

Allows for automatic change of topologies

Convex Relaxed CV Model

- Partition boundaries in MS \& Potts model rep'd by L_{0} Norm: $J(u)=\|\nabla u\|_{0}$
- Gradient distribn's mostly vertical and horizontal in natural images.
- $L_{1}-\alpha L_{2} T V$ norm is better approx'n to L_{0} via level lines than $L_{2} T V$.
- α chosen based on gradient distrib's

$\mathrm{L}_{1}-0.5 \mathrm{~L}_{2}$ closer to L_{0} than:
$\mathrm{L}_{1}, \mathrm{~L}_{2}$, and $\mathrm{L}_{1}-\mathrm{L}_{2}$

Level lines plot

Shape Prior Segmentation Why are Shape Priors Needed?

Example of MS Segmentation Without Shape!

- Difficult Cases: Clutter, Regions w/ non-uniform intensities, Occluded Objects
- Prior Must be compatible with Segmentation Models i.e. both can be minimized

Cliques Invariant Signature

Motivatation:
Bending Invariant Signatures Elad and Kimmel 03'

Intervertex Distances:

$$
\sum_{i, j}\left(\left\|p_{i}-p_{j}\right\|^{2}-\left\|r_{i}-r_{j}\right\|\right)^{2}
$$

\mathbf{r}_{i} : pts. lying on reference shape
$\mathbf{p}_{\mathbf{i}}$: pts. lying on some evolving contour

Incorporation into:

- Geodesic Active Contours (Snakes)
- Polygonal Implementation of the P.W. Constant MS Model

Cliques Shape Matching Energy

S Polygonal Rep. of a Reference Shape: $S=\left\{\vec{r}_{i}\right\}_{i=1}^{N}$
$\left[d_{i j}\right]$: Symmetric Matrix of Intervertex
Distances $d_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$
Σ an Evolving Polygonal Contour: $\Sigma=\left\{\vec{p}_{j}\right\}_{j=1}^{N}$
Shape Matching Energy:

$$
\inf _{\Sigma, s}\left\{E_{c}\left(\vec{p}_{1}, \vec{p}_{2}, \ldots, \vec{p}_{N}, s\right)=\sum_{i, j=1}^{N}\left(\left|\vec{p}_{i}-\vec{p}_{j}\right|^{2}-s d_{i, j}^{2}\right)^{2}\right\}
$$

- 's': scale parameter to be min'd over as well
- Invariance to Rigid Motion
- Scale Invariance

Proposed Model

$$
E\left(\Sigma, c_{1}, c_{2}, s\right)=E_{M S}+E_{C}
$$

$$
=\min \left\{\operatorname{Per}(\Sigma)+\lambda \int_{\operatorname{In}(\Sigma)}\left(c_{1}-f\right)^{2} \mathrm{dxdy}+\lambda \int_{\operatorname{Out}(\Sigma)}\left(c_{2}-f\right)^{2} \mathrm{dxdy}\right.
$$

α : shape strength

$$
\left.+\alpha \sum_{i, j=1}^{N}\left(\left|\vec{p}_{i}-\vec{p}_{j}\right|^{2}-s d_{i j}^{2}\right)^{2}\right\}
$$

Σ : Evolving Polygonal Curve

Polygonal CV Model + Shape!

Best approx of ' f ' in L^{2} sense taking 2 values c_{1} and c_{2}
While Enforcing Σ matches reference shape

Shape Prior Segmentation

With Shape
Without Shape

Shape Prior Segmentation Example

Learned Ref Shape

Image to be Segmented

Prior Juxt'd on Image

Final Seg'd. Image!

$$
\alpha=1.0
$$

$\alpha=0.1$
$\alpha=0.5$
shape strength

Disocclusion

$$
E\left(\Sigma, c_{1}, c_{2}, s\right)=E_{M S}+E_{C}
$$

$$
\begin{array}{r}
=\min \left\{\operatorname{Per}(\Sigma)+\lambda_{R} \int_{\operatorname{In}(\Sigma)}\left(c_{1}-f\right)^{2} \mathrm{dxdy}+\lambda_{R} \int_{\operatorname{Out}(\Sigma)}\left(c_{2}-f\right)^{2} \mathrm{dxdy}\right. \\
\left.+\alpha \sum_{i, j=1}^{N}\left(\left|\vec{p}_{i}-\vec{p}_{j}\right|^{2}-s d_{i j}^{2}\right)^{2}\right\}
\end{array}
$$

$$
\lambda_{R}= \begin{cases}0 & \text { if } \vec{x} \in R \\ \lambda & \text { otherwise }\end{cases}
$$

Occluded Region: R
R: Occluded Region
Don't fit data in R

Disocclusion Example

500x500
Occluded Image

Initial contour

Final evolved contour

Disoccluded contour w/ true image

Shape Prior Segmentation: Very Difficult Case

Initial curve

With Prior

No Prior!

- Fuselage matches tarmac.
- 2 completely different intensities in plane Very difficult segmentation!

Ongoing and Future Work

* Convergence proof of the DCA algorithm for proposed model
* Other ways of achieving/exploiting directional sparsity
* Shape Prior Segmentation: Modeling both occluders and shapes
* Neural Network \rightarrow semantic segmentation. Interplay between a trained model and a mathematical one. Not a 2 step approach but a synergistic one.
* Using CNN's for applications to spatially varying blind deconvolution.
* Stochastic Primal Dual methods for Neural Network Optimization
* Convex relaxation techniques for NN's. Some work done on quantizing weights. Xin et al. '18

Thank You for Your Attention!

