
MFIN 290
Programming and Data

Analysis for Business

Dr. Fred Park
Paul Merage School of Business

UC Irvine

 January 8th, 2020

Lecture 1

Course Goals

v  Learn Programming (Python)

v  Learn Data Analysis

v  Above two in the context of business applications

v  Be able to utilize these skills in business, finance, and
beyond!

Motivation

Why programming and data?

We are currently in the 4th industrial revolution also
known as the data revolution.

Motivation

Why programming and data?

Basic engineering skills and data analysis are being
incorporated into nearly every field.

e.g. Fin Tech

Why Python?

v  Python is becoming the standard language for data
science/machine learning

v  Most popular language in industry (IEEE 2019)

The Top Programming Languages of 2019

Source: IEEE 2019 (Inst. of Electrical and Electronics Engineers)

Motivation

Python is:

v  easy to learn

v  syntax that follows normal language

v  flexible

v  fun!

Course Software

Hardest part of the course is installing the software!

v  Anaconda package Python 3.7 version: most of the
popular packages for python bundled. Includes Python
https://www.anaconda.com/download/

v  Pycharm IDE (Integrated Development
Environment). Free with a student email.

v  Other data manipulation packages/ML packages to be
installed later in the course

Basic Elements of Python
v  Python: Interpreted language (vs. compiled)

v  A Python program often called a “script” is a
sequence of definitions and commands

v  The program is executed in a “shell.” Shell is an
interface: REPL: read, execute, print, loop

v  Python Shell is basically an interactive interpreter.
It’s where your program runs

v  Interpreter: reads code you write and converts to
machine language which is of form 0’s or 1’s

e.g. 01000011110000111

Basic Elements of Python Cont’d
A command (also known as a statement) tells the
interpreter to do something

For example: print(“Dodgers Rule!”)
Tells the interpreter to print: Dodgers Rule!

The commands:
print(“Dodgers Rule”,“and are #”, 1)
print(“but not in New York!”)
print(“unless they win the World Series in New York!”)

print:
Dodgers Rule and are #1
but not in New York!
unless they win the World Series in New York!

Objects, Expressions, Numerical Types

v  Object: core thing that python programs manipulate

v  Objects have types: defines things programs can do with
that type

v  Types are either scalar or non-scalar:

1.  scalar = indivisible (think of as atoms of python)

2.  non-scalar = internal structure (a string for example)

Objects, Expressions, Numerical Types cont’d

4 types of scalar objects:

v  int: represents integers. e.g. 1, -2, 2019

v  float: represent real numbers e.g. 3.0, 3.14, -500.27

v  bool: boolean values True or False

v  None: type with single value (more later)

Objects, Expressions, Numerical Types cont’d

>>> print(4)
4

>>> type(4)
<class, ‘int’>
Type is ‘int’ for integer

>>> type(“Hello World!”)
<class, ‘str’>
Type is ‘str’ for string

>>> type(3.14)
<class, ‘float’>
Type is ‘float’ for floating point number

Objects, Expressions, Numerical Types cont’d

>>> type(3.14)
<class, ‘float’>
Type is ‘float’ for floating point number

What about?
>>> type(‘3.14’)

or
>>> type(“3.14”)

Objects, Expressions, Numerical Types cont’d

>>>type(3.14)
<class, ‘float’>
Type is ‘float’ for floating point number

What about:
>>>type(‘3.14’)
<class, ‘str’>
Type is ‘str’ for string

Why?

Objects, Expressions, Numerical Types cont’d

>>>type(3.14)
<class, ‘float’>
Type is ‘float’ for floating point number

What about:
>>>type(‘3.14’)
<class, ‘str’>
Type is ‘str’ for string

Why?
When you add “” or ‘’ à string
e.g. 3.14 vs ‘3.14’ vs “3.14”

Objects, Expressions, Numerical Types cont’d

•  Objects and operators combined à form expressions.
•  These expressions evaluate to an object of some type.
•  We call this the value of the expression.

e.g. 3+2 is the object 5 of type int

e.g. 3.0+2.0 is the object 5.0 of type float

Note: book uses value and object synonymously in the early
chapters
e.g. 3.0+2.0 is the value 5.0 of type float

Once again: think of everything in Python as an object!

Objects, Expressions, Numerical Types cont’d

Some basic operators on objects of type int and float:
+ addition
 - subtraction
/ division
 % remainder upon division 5%3 gives 2
// integer division e.g. 3//2 gives 1
 * multiplication
** power e.g. 2**3 gives 8
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== is equal?
!= not equal

Some operators on ints and floats

Variables

A variable is a name that refers to an object

>>> x = 7.0
>>>print(x)
7.0

>>> x = 7
assignment goes from right to left
e.g. 7 is assigned to name x

Variables

Class Exercise timed 6 mins:

1. assign to the variable my_name your name
and print out to the console

2. set numerical values to the two variables x
and y and print out their sum and product

Variables

Python allows multiple assignments
>>> x, y = 2, 3
binds x to 2 and y to 3

what does the following do?:
>>> x, y = y, x

what does the following do?:
>>> a, b = 3.14, “Hello world!”

what does the following do?:
>>> from = 7

Variables

>>> from = 7
 File "<ipython-input-8-a60736d363b3>", line 1
 from = 7
 ^
SyntaxError: invalid syntax

Results in a syntax error!

Reason, there are certain reserved/key words in python:

These are words that have special meanings and cannot be
used as variable names

Object Types Revisited
why is an int like 714 a scalar and a string like “Hello
world!” non-scalar?

>>> x = 7
>>> y = “Hello world!”
>>> print(y[0])
H
>>> print(y[1])
e
>>> print(y[2])
l
>>> print(x[0])
Traceback (most recent call last):
 File "<input>", line 1, in <module>
TypeError: 'int' object is not subscriptable

non-scalars à underlying structure.

In this case, you can access individ. characters from the
string!

Pycharm IDE
Pycharm is an example of an integrated development
environment (IDE)

IDE:
•  Text editor
•  a shell with syntax highlighting
•  integrated debugger

bug: error in the code
debugging: the act or process of removing bugs in code

Basic Input and Output
We already used the print() command
This is an example of output

What about input?

Python has an input() command

ex. prompt user to enter their name and then print it

>>> nm = input(“please enter your name:\n”)
>? Dr. Park
>>> print(“Hi”, nm)
Hi Dr. Park!

Basic Input and Output

>>> nm = input(“please enter your name:\n”)
>? Dr. Park
>>> print(“Hi”, nm)
Hi Dr. Park!

the \n represents newline

We will do more string formatting later in the quarter!

Question: how is the input stored? How can you check it?

Basic Input and Output
Class exercise timed 10 mins:

1. Write code to prompt you to enter 2 numbers
sequentially
and then print out the sum of the two numbers

2. Write code to enter a word and then the number of
times you want to see it printed out. Then print it out that
many times.

Basic Input and Output
Class exercise timed 10 mins:
1. Write code to prompt you to enter 2 numbers sequentially
and then print out the sum of the two numbers.

2. Write code to enter a word and then the number of times
you want to see it printed out. Then print it out that many
times.

a = input('enter word’)
a = a+' ’
n = input('enter how many times you want to see it’)
n = int(n)
print(n*a)

a, b = input(enter 1st #’), input(enter 2nd #’)
a, b = int(a), int(b)
print(“#1 + #2 =”,a+b)

Branching

Straight line programs: execute one statement after another
until finished (kinda boring)

Branching programs à Branch depending on cases

Simplest branching program = conditional

Conditional statement has 3 parts:
1.  A test à True or False
2.  block of code if test is True
3.  optional block of code if test is False

Branching

branching flow chart

Branching

In Python conditional has following form

if Boolean expression: !

block of code !
else: !

block of code !

Note: indentations in Python are semantically meaningful!

Branching

Example:

x=45 !
if x%2 == 0: !

print(‘even’)!
else: !

print(‘odd’) !
print(‘done with conditional’) !

outputs:
odd !
done with conditional !
!
Note:
 x%2 == 0 à evaluates to True if remainder is 0
== à comparison
= à assignment e.g. x = 3

Branching
Example:

x=45 !
if x%2 == 0: !

print(‘even’)!
else: !

print(‘odd’) !
print(‘done with conditional’) !

Indentations are semantically meaningful!

block corresponds to if statement

block corresponds to else statement
standalone block
executed after
conditional

Branching

Python general chained conditional has following form

if Boolean expression: !

block of code !
elif Boolean expression: !

block of code !
elif Boolean expression: !

block of code !
. !
. !
. !
else: !

block of code !

Note: indentations in Python are semantically meaningful!
elif = else if
else is like a final catch basin if all above conditions are False

Nested Branching

If the True or False block of a conditional contains another
conditional à called nested

x=6 !
if x%2 == 0: !

if x%3 == 0: !
print(‘divisible by 2 and 3’) !

else: !
print(‘divisible by 2 and not by 3’) !

elif x%3 == 0: !
print(‘divisible by 3 and not by 2’) !

!
note: elif means: else if
!
!

Nested Branching
x=45 !
if x%2 == 0: !

if x%3 == 0: !
print(‘divisible by 2 and 3’) !

else: !
print(‘divisible by 2 and not by 3’) !

elif x%3 == 0: !
print(‘divisible by 3 and not by 2’) !

!
x%2==0

T

T
x%3==0 x%3==0

T F

F

div by 2 and 3 div by 2 & not 3 div by 3 but not 2

Nested Branching Cont’d

x,y,z = 1,2,3 !
!
if x < y and x < z: !

print(‘x is least’) !
elif y < z: !

print(‘y is least’) !
else: !

print(‘z is least’) !

Compound boolean expression

x < y and x < z means x is less than both y and z

Nested Branching Cont’d

Class Exercise timed 10 mins:

Prompt a user to enter a score between 0 and 100. e.g. 95.
Then print out their grade based on the following rubric

>= 90 à grade = A
>= 80 à grade = B
>= 70 à grade = C
>= 60 à grade = D
< 60 à grade = F

Nested Branching Cont’d
Class Exercise timed 10 mins:
Prompt a user to enter a score between 0 and 100. e.g. 95.
Then print out their grade based on the following rubric:
>= 90 à grade = A
>= 80 à grade = B
>= 70 à grade = C
>= 60 à grade = D
< 60 à grade = F

nm = input(’enter a # bet. 0 and 100:')
nm = int(nm)
if nm >= 90 and nm <= 100 :

 print('you got an A grade!')
elif nm >= 80 and nm <= 89:

 print('you got a B grade!')
elif nm >= 70 and nm <= 79:

 print('you got a C grade!')
elif nm >= 60 and nm <= 69:

 print('you got a D grade!')
else:

 print('you got an F grade!')

Strings

string objects have some special properties

ex.
>>> a = “Ricky Bobby”
>>> a[0]
R
>>> a[-1]
y

example of string indexing
In Python, indices start at 0.
a[-1] à gives last element
a[10]à also gives last element

Question: What does a[5] give?

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

ex. Type the following and what do you notice?
>>> a = ‘123456789’
>>> a[::]
?
>>> a[0::]
?
>>> a[:10:]
?

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

ex. Type the following and what do you notice?
>>> a = ‘123456789’
>>> a[1::]
?
>>> a[1:10:]
?
>>> a[::2]
?

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

exercise: from the string: a = ‘123456789’
In one line of code create a new string with only the odd
numbers e.g. “13579”

exercise: do the same but evens

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

exercise: from the string: a = ‘123456789’
In one line of code create a new string with only the odd
numbers e.g. “13579”
>>> a[::2]

exercise: do the same but evens
>>> a[1::2]

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

exercise: from the string: a = ‘123456789’
what does the following command do?
>>> a[1:-1:2]

Strings

Slicing strings
Can extract parts of the string via slicing
a[start: stop: stride]
stride = spacing

exercise: from the string: a = ‘123456789’
what does the following command do?
>>> a[1:-1:2]
‘2468’

Handling Errors in Input

Handling Exceptions

What if you prompt a user to enter an integer and they
enter a string? You get an error.

>>> num = input(‘Please enter a #: ’); num = int(num)
>? you got it!!

You get a ValueError!!

How do you bypass this?

Handling Errors in Input

How do you bypass this?

You can catch exceptions using the try and except clause

inp = input('Please enter an integer: ')
try:
 inp = float(inp)
 print("3 times your number =", 3*inp)
except:
 print('You did not enter an integer!')

If all goes well in the try block it skips except block
If error occurs in try block, goes to the except block

